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LETTER TO THE EDITOR 

Lie point-symmetries and PoincarC normal forms for 
dynamical systems 
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? Dipartimento di Fisica dell 'Universita', Piazza Tomcelli 2, 56100 Pisa, Italy 
$ IHES, 91440 Bures-sur-Yvette, France and CPTh, Ecole Polytechnique, 91 128 Palaiseau, 
France 

Received 7 June 1990 

Abstract. The problem of finding the extended Lie-point time-independent symmetries of 
autonomous systems of ordinary differential equations is compared with the Poincard 
procedure of reducing the system to linear or normal form, showing a close relationship 
between the two problems. Some special situations, including the classical Hopf bifurcation 
problem, are also examined from this point of view. 

Let us consider a system of autonomous first-order time-evolution differential equations 
for the real n-dimensional vector u = U( t) E R" 

du 
d t  -=f (U) 

where f is an analytical vector field f 5 (fi,fr,. . . , fn), h :Cl+ R" and Rc R" is an 
open neighbourhood of u = 0, such that f ( 0 )  = 0. We shall write, separating the linear 
part from the remaining higher-order terms 

where h'"(u) is a n-vector field whose components are linear combinations of 
monomials of degree m 2 2 .  The problem of finding all Lie-point (LP)  symmetries 
admitted by ( 1 )  (in the extended sense, including nonlinear and/or local ones, according 
to the old idea due to Lie, and recently reconsidered by many authors; see, e.g., [ 1-41 
and references therein) can be stated in the following way. Writing the symmetry 
generator in the form 

f (U) = Lu + h ( u )  = Lu + h 2 ( u ) +  h ' 3 ' ( U ) + .  . . ( 2 )  

= +(ai + T a t  a i  = a / a u i ,  a, = 3/81 (3) 
where +i = &(U, t) ,  T = T(u, t ) ,  it can be shown, following [l-41 (see also ( 5 )  for further 
details), that the determining equations for +i,  T are 

h a f k  - 8 d k  + f k a r T  - h a i + k  + f k f ; a i T  = 0. (4) 
We are interested here in time-independent LP symmetries, so the above conditions 
become 

4 i a f k  - f ; a i + k  { + , f } k  = 0 ( 5 )  
(having introduced the shorthand notation { ,}). Assume now that the functions 4 i ( u )  
can be constructed as a formal series expansion: 

( 6 )  +i  = + $i2'( U )  + ${3'(u) + . . . 
0305-4470/90/160799+04$03.50 @ 1990 IOP Publishing Ltd L799 
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where a) is an n x n constant matrix, and each $!“’(U) is a linear cornbination of 
monomials of order m. First of all, one immediately deduces from ( 5 )  the vanishing 
of the Lie commutator: 

[a), L ]  = 0. (7) 
This reproduces a classical result coming from standard (i.e. linear) theory of 
equivariant problems [6-81: we recall that a problem ( 1 )  is said to be equivariant with 
respect to a linear group of transformations G acting on rn  if 

f k u )  = g f ( u )  QgE G. (8) 
In the case where G is a Lie group of linear transformations, it is easily seen that a) 

is the matrix representing the Lie generators of G in the space R”, and then (7) 
immediately follows from (8). We can say that ( 5 )  constitutes a sort of ‘extended 
(nonlinear) equivariance’ of (1) under the action of the group generated by the 
operators 7. 

The next step is to write down condition (5) separately for the various orders m 5 2 
( L $ ( ’ ) ) k  + (LU) ,d ,$ r ’=  ( @ h ( 2 ) ) k  - ( a ) u ) , d r h i 2 )  

( L - ( L u )  * d ) $ ‘ 3 ’ = ( a ) - ( a ) u ) .  3 ) $ ( 3 ) + { h ( ’ ) ,  $(2)} 

( L - ( L u )  * d)$(4 )=(a ) - (a )u)  3)Ip4)+{h(’), $ ( 3 ) } + { h ( 3 ) ,  

(9) 

(in the second and third lines a clear shortening of notation with respect to the first 
one has been adopted), and so on. All equations in (9) have the form of ‘homological 
equations’ (cf [9]) 

where at the RHS of each order m the sum is extended to all possible brackets {h‘“’, $ C l ‘ b ’ }  

giving monomials of degree m, and DL is the operator 

D,$“’= W ( m ) E  D J p + q m ) { p ,  $@I} (9’) 

&= ( L - ( L U ) , d , )  (9”) 
(and similarly for &). Then, once a matrix a) has been chosen in agreement with (7), 
the RHS of the first line in (9) is known, and we see that if the first p lines of (9) can 
be solved, then the RHS of the ( p  + 1)th equation is also known. Assume now that L 
can be diagonalized (this is not a restriction, cf [9]), with eigenvalues u k  and eigenvec- 
tors e,; denoting by ( C l ,  C 2 , .  . . , U”,) coordinates with respect to the basis ek, then L 
also is diagonal in the space of vector-valued monomials umek ( u m =  
u;tluy2 . . . U?, m, 2 0, m = m1 + m2+. . .+ m, 2 2; for notational convenience we write 
simply U instead of U“, or assume L diagonal tout court), with eigenvalues 

(10) 
where (U, m) = u l m l + .  . .+u,m,, and the mth equation of the system (9) splits into 

one of these equations can be solved if the RHS of (10) is never zero, i.e. if all the 
eigenvalues u k  of L are non-resonant. But this is precisely the same condiiion ensuring 
the solvability of each step of the classical PoincarC method for reducing the system 
( 1 )  to its linear part [9]. Therefore, we can say: 

DLU e k  = ( U k  - ( U, m ) ) U m e k  

N = (m+m-- l  ) equations, N being the number of all monomials of degree m. Then, each 

Proposition 1. The sufficient conditions on the eigenvalues of the linear part L of (1) 
which ensure, according to the Poincari procedure, the reduction of (1) to the linear 
form by a formal (respectively converging) series, ensure also the existence of a LP 
symmetry written as a formal (respectively converging) series. 
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The main difference here with respect to the Poincari procedure for reduction to 
linear or normal forms is the special form of the RHS of all equations (9). More 
precisely, the arbitrariness in the matrix 0 (only condition (7) is to be satisfied) may 
allow us to solve (9), even in the presence of resonances, by choosing 0, whenever 
possible, in such a way that the RHS of all equations in (9) which contain resonant 
eigenvalues is also equal to zero. In particular, concerning the problem of finding LP 

symmetries of ( l ) ,  some further considerations can be of interest (see also [ 5 ]  for 
futher detail). First of all, it can be noted that in the algebra generated by the LP 

symmetries of (l),  there is always an 'obvious' generator, satisfying ( 5 ) ,  which is given 
by 

7f =f;& (11 )  

(i.e. c$~ =A, + ( k )  = h'k') which corresponds to the time evolution of solutions: U( t )  + 
U( t + E )  (in fact, a ,  - J a i  = 0 on each solution). Let us remark also that if 7 is a symmetry 
generator of ( l ) ,  the same is also true for 

T"Y(U,  t ) 7  (12) 

a,y +f;aiy = 0. 

if y is any solution of the linear PDE 

This means that y is a 'constant of motion' along any solution of ( l ) ,  and 7 and 7' 
have the same effect once applied to any solution u ( t )  of ( 1 ) :  this allows us to consider 
7 and 7' as 'identical symmetries' and, when enumerating the possible independent 
symmetries, to look only for truly different symmetries. Some simple consequences of 
(9) in some special cases are presented in the following propositions. 

Proposition 2. If all the eigenvalues U k  of L are distinct and non-resonant, then we 
may choose @ ( k )  = P ( k ) ,  the orthogonal projection operator on the eigenvector e k  of 
L, and then construct through (9) n linearly independent symmetries 7 ( k )  of (1). In 
particular, in the case h = 0, i.e. if the problem (1) is linear (or reduced to this form), 
these symmetries are given by 7 , 1 ( ~ )  = ukak (no sum over k ) ,  i.e. by dilations along the 
direction e k .  

Let us remark that the above symmetries for the linear case form an Abelian algebra. 
Notice also that the linear case admits always symmetries of the form 7, = f f k a k ,  where 
a = a ( t )  is any solution of the given system, a fact which corresponds to the linear 
superposition property; in any case, they do not enter in our discussion, since we 
limited it to time-independent symmetries. 

Proposition 3. Suppose that the nonlinear part h( U )  in ( 1 )  contains just one monomial 
U m e k ,  without any hypothesis on the presence of resonances. Then there are ( n - 1 )  
linear symmetries for the system ( 1 ) .  

Roo$ All equations not containing umek can be solved by +(') = 0, and the remaining 
term I,@'' proportional to U m e k  is determined by the equation 

( g k - ( u ,  m))f,h(km)=D@Umek. 

Putting 

0 = diag(p1 3 .  . ., P n )  
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this equation can be solved by choosing pi in such a way that pk = (p ,  m) and +(km)  = 0, 
and this gives n - 1 independent linear symmetries, whether or not umek is a resonant 
term. The nth possible choice pi = ut and +im) # 0 produces the symmetry 77 = v,-. 

Proposition 4. If all nonlinear terms in the system (1) are resonant, there is at least 
one linear symmetry, which generates the scaling ui + ui exp(uie), E E R. 

Proof. All equations (9) can be solved by + i k )  = 0 for all k, i, and choosing the elements 
pi of Q, (in the form (13)) satisfying all conditions pk = (p ,  m) for all monomials umek 
appearing in the nonlinear part of the given system (1). The number of independent 
solutions pi of all these conditions gives the number of the possible linear symmetries 
admitted by (1); the hypothesis that all the appearing monomials are resonant ensures 
that at least the choice ui = pi is a solution. 

The last proposition is interesting because it is known that, according to the 
Poincark-Dulac theorem [9], any system (1) may be converted, by a formal or converg- 
ing series, into a system containing only resonant terms. 

A particular case is given when n = 2 and the eigenvalues of L are imaginary, say 
*iw, and then resonant, as in the standard Hopf bifurcation problem [6-8]: Once 
reduced to the normal form, the linear symmetry generated according to proposition 
4 can be written in the form z -+ z exp(iws), having introduced the complex vector 
z = U, + iu2 as usual: then this expresses just the known property that the normal form 
of this problem exhibits an explicit equivariance under the rotation group S’ = SO, 
[6-81. 
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